点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:大发彩票网址_大发彩票登录
首页>文化频道>要闻>正文

大发彩票网址_大发彩票登录

来源:大发彩票邀请码2024-11-02 17:48

  

莫让过度炒作耽误新技术******

  莫让过度炒作耽误新技术

  李华林

  横空出世的AIGC,看似拥有广阔前景和多种可能,但目前该概念尚是一个新兴事物。从实验室到大规模商用落地,还有不短距离,市场各方有必要冷静再三,莫让炒作耽误了好技术的好前程。

  兔年首个交易周,A股市场交投活跃,不少板块收获“涨声一片”。其中,AIGC概念板块指数前4个交易日一度上涨逾7%,引得一众投资者蜂拥至互动平台,追问多家上市公司:是否涉足AIGC?

  蹿红的AIGC到底是什么?AIGC即AI Generated Content,也就是利用人工智能技术自动生产内容,包括文字、图片、音频、视频、代码等。以最近爆火的聊天机器人ChatGPT为例,这款由美国某实验室推出的机器人既会写论文,也能创作小说,还可编代码,上线仅2个月,月活用户达1亿。因为出乎意料的“聪明”,AIGC被认为是“科技行业的下一个颠覆者”“内容生产力的一次重大革命”。

  AIGC的横空出世,与此前红极一时的元宇宙、Web3等一脉相承,背后都有着相应技术支撑,承载着人们对未来生活的美好期待。近年来,随着5G通讯、自然语言生成等底层技术日渐成熟,人工智能突飞猛进,用AI绘画、让聊天机器人写代码……现实场景的成功应用,让人们切实触摸到了AIGC带来的改变。

  我国对数字经济的支持,也给AIGC加了一把火。党的二十大报告提出“加快发展数字经济”,数字经济日益成为高质量发展的新引擎,是新一轮国际竞争的重点领域。某种程度上,把握住数字经济发展先机,就能抢占未来发展制高点。代表数字技术方向之一的AIGC,被视作新赛道。

  风口之上,谁都想趁机起飞。反映到资本市场,已有不少上市公司积极表态,将在AIGC领域加大投入布局。各路资金也闻风而动,推动相关概念板块一路上涨,多只股票更是接连涨停。

  不过,尽管AIGC火爆一时,看似拥有广阔前景和多种可能,但目前该概念尚是一个新兴事物,还存在关键核心技术不成熟、商业应用场景较少、技术伦理挑战突出等问题。从理想到现实,从实验室到大规模商用落地,还有不短距离,市场各方有必要冷静再三,莫让炒作耽误了好技术的好前程。

  从过去经验看,利用人们对未来技术的着迷,以及部分投资者幻想一夜暴富的心理动机,过度宣传、借机炒作的事例不胜枚举。这其中,有些是市场资金有意捧之,相关股票被动身价上涨;有些则是上市公司主动“炒概念”“蹭热点”。但无一例外的是,概念炒作越烈,市场泡沫越大,与国家着力发展实体经济的政策基调相去愈远,对相关行业发展的干扰愈甚,到头来难免落得一地鸡毛。

  还要注意,随意炒作概念涉嫌市场操纵,一直被监管部门明令禁止。不久前,证监会表示,规范和引导资本市场健康发展,加强对“蹭热点”“炒概念”及上市公司相关方操纵行为的监控处置和打击力度。随着全面注册制正式启动,对相关乱象的整治将只严不松,倘若仍一意炒作,必将被监管部门所不容。

  对一项新兴技术,投资者抱有热情的同时,也要保有一份审慎。正如多家上市公司坦言,目前AIGC对业务营收影响不大,仍有待进一步推广应用。AIGC概念股能否受益于技术的发展尚未明朗,投资者需把握好投资尺度,切勿跟风炒作,以防追高被套。

  事实上,再神奇的技术也需经过市场反复检验,任何创新产品的价值实现,都应建立在理性的交易秩序之中。投资者多一份价值投资的理智,上市公司多一份久久为功的定力,市场多一份行稳致远的从容,才有助于一个新兴行业的健康长远发展,让梦想更好地照进实现。

大发彩票网址

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 大智慧实控人被拘 面临3年以下有期徒刑或拘役

  • 组图:今田美樱登《with》封面 夏日清新装扮令人眼前一亮

独家策划

推荐阅读
大发彩票走势图菩提为何狠心将孙悟空赶出师门?生死簿上有答案!
2024-01-04
大发彩票必赚方案南京应用技术学校涉嫌虚假招生?南京人社局回应
2024-03-04
大发彩票APP交易所:上周新增报会企业13家
2024-06-02
大发彩票攻略别再节食了 原来吃肉也能减肥 看完你就懂了!
2024-03-28
大发彩票客户端央视重要提示:5月新规来了 第一条就超重磅
2024-04-21
大发彩票玩法《全职高手之巅峰荣耀》首曝海报 电竞少年出征
2024-03-13
大发彩票app下载 猫妈妈好心收养失去母亲小松鼠:相互依偎非常亲昵
2024-09-15
大发彩票代理杨幂栏杆压腿姿势标准 扎马尾笑容甜美
2024-08-02
大发彩票赔率小马宝莉友谊的魔力小马国里的魔法表演女孩们的友谊
2024-09-16
大发彩票注册女副局长与群众座谈大耍官威:你哪小区的 记下来
2024-10-22
大发彩票开奖结果德民众"躺尸"抗议气候变化
2024-05-12
大发彩票骗局【贵州】贵州:坚定不移推进高水平对外开放
2024-04-21
大发彩票官网网址青蒿素出现耐药挑战,抗疟不再有效?
2023-12-30
大发彩票技巧刚买一年价格掉一半!新能源车,为啥转手就尴尬
2024-06-07
大发彩票注册网哈登:我们想得到公平 希望裁判用正确方式吹罚
2024-04-06
大发彩票网投 丹麦首富痛失3个子女
2024-08-10
大发彩票娱乐出门问问 TicWatch C2 体验:实用又有高颜值
2024-07-01
大发彩票规则美国断腿伤兵获外卡角逐威巡赛
2024-01-15
大发彩票漏洞董藩:我不主张在收缩型城市搞振兴
2024-06-12
大发彩票官网平台 全国各地哪里的早餐最好吃?
2024-07-05
大发彩票客户端下载“苏大强”当老师?周迅出席倪大红公开课 眼神专注侧颜清瘦
2024-05-13
大发彩票论坛自卑微中崛起逆天改命
2024-01-13
大发彩票官方专访|洛凡:对喜欢自己的人负责
2024-05-27
大发彩票手机版企鹅蛋为何不结冰?帝企鹅爸爸已经进化成"暖水袋"
2024-04-02
加载更多
大发彩票地图